Prof. Dr. Brigitte Jaumard | Machine Learn Award | Best Researcher Award

Prof. Dr. Brigitte Jaumard | Machine Learn Award | Best Researcher Award

Prof. Dr. Brigitte Jaumard, Concordia University, Canada

Prof. Dr. Brigitte Jaumard is a distinguished professor in the Computer Science and Software Engineering Department at Concordia University, Canada. She has a prolific career in academia and research, holding multiple prestigious roles, including Tier I Canada Research Chair (CRC) in Optimization of Communication Networks. Her work spans over several decades, and she has contributed significantly to the fields of artificial intelligence, communication networks, and optimization. Dr. Jaumard has also held leadership positions at the Computer Research Institute of Montreal (CRIM) and has been recognized for her innovative work in AI and machine learning. She has received numerous awards, including Best Paper Awards at international conferences. 🌟

Professional Profile

Google Scholar

Suitability for Award

Prof. Dr. Brigitte Jaumard is an ideal candidate for the Research for Best Researcher Award due to her outstanding contributions to the fields of artificial intelligence, optimization, and communication networks. Her leadership in research, exemplified by her role as a Tier I Canada Research Chair and her work in AI and machine learning, has made significant strides in both theoretical and applied research. Prof. Jaumard’s numerous awards and honors further attest to the high regard in which her work is held. Her impactful research and dedication to advancing technology make her an excellent choice for this prestigious award. 🏆

Education

🎓 Prof. Dr. Brigitte Jaumard holds a Thèse d’Habilitation from Université Pierre et Marie Curie, Paris (1990), and a Ph.D. in Electrical Engineering from École Nationale Supérieure des Télécommunications (ENST), Paris, with the highest honors in 1986. She also completed a DEA (M.Sc.) in Artificial Intelligence from Université Paris VI (1984) and a degree in Computer Engineering/Information System Engineering from Institut d’Informatique d’Entreprise (1983). Her educational background laid a solid foundation for her career in optimization, AI, and communication networks. 📘

Experience

🧑‍🏫 Prof. Jaumard has held several prestigious academic appointments, including as a professor at Concordia University since 2010, where she currently teaches and conducts research in optimization and AI. She served as a Tier I Canada Research Chair in Optimization of Communication Networks from 2001 to 2019. Additionally, Prof. Jaumard has been involved in administrative roles, such as the Scientific Director of CRIM and Principal Data Scientist at Ericsson’s Global AI Accelerator. Her leadership in both academic and industrial research has made significant impacts on AI and network optimization. 🌍

Awards and Honors

🏅 Prof. Jaumard has received multiple accolades, including Best Paper Awards at the IEEE International Symposium on Measurements & Networking (2022) and IEEE Sarnoff Symposium (2017). She also ranked 1st in the 2022 ITU Artificial Intelligence/Machine Learning in 5G Challenge (Graph Neural Networking) and 2nd in 2021. These awards highlight her groundbreaking contributions to AI, machine learning, and network optimization. Her consistent recognition in prestigious conferences and competitions underscores her expertise and leadership in the field. 🌟

Research Focus

🔬 Prof. Jaumard’s research focuses on optimization of communication networks, artificial intelligence, machine learning, and data-centric AI. She has made significant contributions to the development of scalable network models, including network digital twins, and has advanced the application of graph neural networks in communication systems. Her work in AI spans across both theoretical aspects and real-world applications, particularly in optimizing network performance and improving AI systems’ reliability. Prof. Jaumard’s research has had a lasting impact on both academia and industry. 🧑‍💻

Publication Top Notes:

  • New branch-and-bound rules for linear bilevel programming
    • Year: 1992
    • Citations: 969
  • Cluster analysis and mathematical programming
    • Year: 1997
    • Citations: 961
  • Algorithms for the maximum satisfiability problem
    • Year: 1990
    • Citations: 558
  • A generalized linear programming model for nurse scheduling
    • Year: 1998
    • Citations: 408
  • A branch and cut algorithm for nonconvex quadratically constrained quadratic programming
    • Year: 2000
    • Citations: 262

 

Dr. Julius Olaniyan | Machine Learning Award |Best Researcher Award

Dr. Julius Olaniyan | Machine Learning Award |Best Researcher Award

Dr. Julius Olaniyan, Bowen University, Nigeria 

Olaniyan Julius in Odo-Owa, Kwara State, Nigeria. He is a Lecturer II in the Computer Science Department at Bowen University, Iwo, Osun State, Nigeria. Julius holds a Ph.D. in Computer Science (2023) and has extensive experience in software development, data analysis, and teaching. He has worked in several institutions, including Landmark University, Federal Polytechnic Auchi, and Feghas Solutions Ltd. Over his career, he has developed various applications using programming languages such as C, C++, Java, Python, and PHP. Julius specializes in Artificial Intelligence, Computer Vision, Natural Language Processing, and Machine Translation. A devoted husband and father of three, Julius is passionate about advancing AI and its application in healthcare and education. He has contributed to several innovative research papers in the field of computer science and AI.

Professional Profile:

Google Scholar

Summary of Suitability for Award:

Dr. Olaniyan has demonstrated outstanding proficiency and expertise in the fields of Artificial Intelligence, Computer Vision, Natural Language Processing, and Machine Translation, with a solid academic background in Computer Science. He holds a Ph.D. in Computer Science from Landmark University, and has published extensively in high-impact journals and conferences. His work on cataract detection using deep learning, as well as his innovative contributions in areas like speech refinement and emotion recognition, highlights his commitment to advancing technology for real-world applications. Furthermore, his ability to collaborate across interdisciplinary research teams and contribute to several peer-reviewed articles reflects his academic rigor and leadership.

🎓Education: 

Olaniyan Julius completed his Ph.D. in Computer Science at Landmark University (2023). He also holds a Master’s in Computer Science (M.Tech) from the Federal University of Technology, Akure (2019), where he also earned a Postgraduate Diploma (PGD) in 2012. Julius started his academic journey with a Bachelor’s in Computer Science from the Federal University of Oye Ekiti (2022). His earlier qualifications include a Higher National Diploma (HND) in Computer Science from Auchi Polytechnic (2006), and a National Diploma (ND) in the same field (2000). Julius completed his Secondary Education at Orota Community High School, Odo-Owa (1994) and his Primary Education at St. Thomas Catholic School (1988). His strong educational foundation in Computer Science has shaped his successful academic and professional career.

🏢Work Experience:

Olaniyan Julius has a diverse career in academia and industry. He is currently a Lecturer II at Bowen University, Nigeria. Previously, he served as a Lecturer II at Landmark University (2023-2024) and as a Data Analyst at Federal Polytechnic Auchi (2013-2022). His industry experience includes working as a Software Developer/Business Developer at Feghas Solutions Ltd. (2009-2012) and a Tutor/Application Developer at Pesoka Systems Ltd. (2008). Julius also has teaching experience from his time as a Lecturer during his NYSC service at Maritime Academy of Nigeria (2007-2008). His early career included roles like Data Processing Officer at Ajaokuta Steel Company (2002-2004) and School Database Admin at Sani Bello Secondary School (2001). Julius’s experience spans academic teaching, research, software development, data analysis, and project management.

🏅Awards:

Olaniyan Julius has received numerous accolades throughout his academic and professional journey. His Ph.D. dissertation was highly recognized, contributing to his recognition as an emerging scholar in Computer Science. He was awarded a best student award during his time at Landmark University and has been recognized by the Federal Polytechnic Auchi for his outstanding performance as a Data Analyst. Julius’s commitment to education and research has earned him several institutional commendations for his efforts in developing AI-driven solutions in healthcare and education. His research in Artificial Intelligence and Machine Translation has garnered him recognition at international conferences. He is also an active member of several professional organizations in computer science and artificial intelligence. Julius’s leadership and contributions to academic and professional initiatives have cemented his reputation as a passionate educator and researcher.

🔬Research Focus:

Olaniyan Julius specializes in Artificial Intelligence (AI), with a focus on Computer Vision, Natural Language Processing (NLP), and Machine Translation. His work primarily involves using deep learning techniques to create solutions for healthcare (e.g., cataract detection) and education (e.g., student performance evaluation). Julius is dedicated to developing hybrid AI models that combine traditional methods with transformative learning approaches. His research in audio signal denoising and speech-to-speech translation aims to enhance communication and multilingual interaction. He is passionate about designing AI-powered systems that can automate and optimize processes, improving outcomes in health diagnostics and online learning environments. Julius’s work on emotion detection in virtual classrooms and the integration of CNN models for speech emotion recognition represents a significant contribution to the AI field. His interdisciplinary research approach holds promise for real-world AI applications in various domains.

Publication Top Notes: 

  • “Utilizing an Attention-Based LSTM Model for Detecting Sarcasm and Irony in Social Media”
  • “Implementation of Audio Signals Denoising for Perfect Speech-to-Speech Translation Using Principal Component Analysis”
  • “Advancements in Accurate Speech Emotion Recognition Through the Integration of CNN-AM Model”
  • “Transformative Transparent Hybrid Deep Learning Framework for Accurate Cataract Detection”
  • “Parallel Attention Driven Model for Student Performance Evaluation”